Cureus | Technical Report: Percutaneous Reductions on Gartland Type III Supracondylar Fractures

2022-09-03 08:32:09 By : Ms. Anne zhang

"Never doubt that a small group of thoughtful, committed citizens can change the world. Indeed, it is the only thing that ever has."

Cureus is on a mission to change the long-standing paradigm of medical publishing, where submitting research can be costly, complex and time-consuming.

The SIQ for this article will be revealed

elbow fracture, pediatric surgery, pediatric trauma, closed reduction, supracondylar fractures

Rafaela M. Gonçalves , Mariana O. Lobo, Flávio E. Azevedo, Felipe M. Braga, Anderson Freitas

Cite this article as: Gonçalves R M, Lobo M O, Azevedo F E, et al. (June 22, 2022) Technical Report: Percutaneous Reductions on Gartland Type III Supracondylar Fractures. Cureus 14(6): e26202. doi:10.7759/cureus.26202

Various surgical treatments for supracondylar fracture in children remain the motive of research and study. A common factor in each technique is anatomic reduction, which is critical for the excellent recovery of the fracture. Anatomic reduction is preferably realized through closed and percutaneous approaches. This study aimed to present a closed percutaneous technique to treat Gartland III supracondylar fractures to aggregate a facilitating factor in the surgical approach to this condition. Our technique was applied to surgical patients in orthopedic and traumatology emergency care and illustrated by a synthetic elbow model, including soft tissue and intraoperative images.

Supracondylar fractures in children comprise the most considerable portion of surgical treatments in the pediatric population, representing 3% to 15% of all childhood fractures [1,2]. In stable fractures, the preferred treatment method for displaced supracondylar fractures is closed reduction and percutaneous pinning [3,4]. However, the preferred method can be challenging to perform due to edema, local hematoma, instability, and degree of deviation [1]. Closed reduction can be accomplished using the joystick technique in complex cases, preserving the posterior periosteum. However, a new approach to managing percutaneous reductions on supracondylar fractures can offer a straightforward approach and increase the portfolio of surgical treatments to address this pathology [5,6].

In posteriorly displaced fractures, the patient is in a prone position with the elbow resting on the image intensifier of the fluoroscopy machine. Exsanguination was not performed in our cases, but it can be used according to the surgeon's preference. We start by trying to obtain bone fragment alignment through closed reduction. If attempts of closed reduction fail, we then realize longitudinal traction of the affected limb, with the elbow in extension, to obtain a slight alignment of the fractured fragments, correcting the deviation on the coronal plane. Rotational misplacements are harder to rectify, but the technique helps to achieve its alignment. We execute a small incision on the posterior surface of the arm at the fracture level via a blunt trans-tricipital dissection with a blunt instrument (Kelly clamp or scissors, both with curved tips), reaching the fracture site that will be breached until the tip of the instrument hits the anterior edge of the proximal humerus fragment (Figures 1A, 1B). This approach does not involve any muscular plane of the posterior compartment. The blunt instrument must be introduced carefully, avoiding deep advances on the anterior edge of the proximal humerus fragment, to minimize the risks of neurovascular injuries.

Moving the surgical instrument on the longitudinal axis of the arm in the distal-proximal direction, the posterior part of the instrument will be pushing and anteriorizing the distal fracture fragment (distal humerus), causing the Kapandji effect of reduction (Figures 2A-2C) [7], allowing fragment movement and the reduction of the supracondylar humerus fracture in a less traumatic form. After radioscopy evaluation shows a good reduction pattern, the surgeon can execute the pinning in the desired way, starting from the lateral column (Figures 3A, 3B) according to the required quantity of wires. It should be noted that the technique does not prevent ulnar nerve injury, especially when pinning the medial column.

For the crossed wires technique, the instrument should be kept to better control the reduction and its maintenance during the position shifting of the elbow. Another method is temporarily securing more than one wire in the lateral column to avoid rotational loss of the reduction. This way, the immediate postoperative fixation will be done with less soft tissue manipulation, less structural damage, and better preservation of the local biology (Figures 4A-4E, 5A, 5B).

“Give me a lever and a place to stand, and I will move the earth,” the famous phrase of the Greek mathematician Archimedes de Siracusa (287-212 a.C) [8] that not only conveys the concept of balance in the law of levers but also highlights the conception of the technique described in this review: the principle of intrafocal fixation described by Kapandji [7]. Kirschner wires inserted directly on the fracture line is one of many orthopedics techniques that apply the law of levers, providing energy to obtain anatomic reduction and minimizing added injuries resulting from the reduction procedure. 

On the supracondylar fracture, open reduction and percutaneous pinning are associated with a higher risk of complications, such as joint stiffness, neuropraxia, and heterotopic ossification [3,6]. Therefore, in the absence of exposed, highly deviated, or irreducible fractures and neurovascular injuries on Gartland Type III fractures, open reduction, and percutaneous pinning are the standard treatment choice. The difficulties related to the reduction procedure are mitigated by the technique described here and the joystick technique (Table 1) [1,5]. Of the four cases where the technique was applied, one was unsuccessful because the distal fragment kept getting exaggeratedly anteriorized during its manipulation, requiring open reduction. We noticed the violation of the posterior periosteum, which was then treated as a Gartland type IV supracondylar fracture.

Even though the technique described demonstrated effectiveness, it is necessary for its ratification through epidemiological studies and clinical trials.

We described a technique facilitating closed reductions of Gartland type III supracondylar fractures. Our technique is indicated in cases of multiple failed closed reduction attempts or misaligned closed reductions, and should be considered before open reduction and internal fixation. To obtain the desired alignment on the coronal plane, traction of the affected limb with the elbow in extension is sufficient for its achievement. This technique is not exempt from neurovascular risks. However, they are greatly minimized if introducing the blunt instrument carefully and not breach the anterior edge of the proximal humerus fragment. This technical report emphasizes the importance of periosteum integrity related to the employment of the technique. We also call attention to the urgency of the treatment of such fractures and the benefits of a closed procedure, minimizing the risks of neurovascular injuries and soft tissue damage.

Orthopedics and Traumatology, Hospital Regional of Gama, Brasília, BRA

Orthopedics and Traumatology, Hospital Regional of Gama, Brasilia, BRA

Orthopedics and Traumatology, Hospital Regional of Gama, Brasilia, BRA

Orthopedics and Traumatology, Hospital Regional of Gama, Brasilia, BRA

Orthopedics and Traumatology, Hospital Regional of Gama, Brasilia, BRA

Human subjects: Consent was obtained or waived by all participants in this study. Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Gonçalves R M, Lobo M O, Azevedo F E, et al. (June 22, 2022) Technical Report: Percutaneous Reductions on Gartland Type III Supracondylar Fractures. Cureus 14(6): e26202. doi:10.7759/cureus.26202

Peer review began: May 24, 2022 Peer review concluded: June 21, 2022 Published: June 22, 2022

© Copyright 2022 Gonçalves et al. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Scholarly Impact Quotient™ (SIQ™) is our unique post-publication peer review rating process. Learn more here.

This link will take you to a third party website that is not affiliated with Cureus, Inc. Please note that Cureus is not responsible for any content or activities contained within our partner or affiliate websites.

Scholarly Impact Quotient™ (SIQ™) is our unique post-publication peer review rating process. SIQ™ assesses article importance and quality by embracing the collective intelligence of the Cureus community-at-large. All registered users are invited to contribute to the SIQ™ of any published article. (Authors cannot rate their own articles.)

High ratings should be reserved for work that is truly groundbreaking in its respective field. Anything above 5 should be considered above average. While all registered Cureus users can rate any published article, the opinion of domain experts is weighted appreciably more than that of non-specialists. An article’s SIQ™ will appear alongside the article after being rated twice and is recalculated with each additional rating.

Visit our SIQ™ page to find out more.

Scholarly Impact Quotient™ (SIQ™) is our unique post-publication peer review rating process. SIQ™ assesses article importance and quality by embracing the collective intelligence of the Cureus community-at-large. All registered users are invited to contribute to the SIQ™ of any published article. (Authors cannot rate their own articles.)

Already have an account? Sign in.

Please note that by doing so you agree to be added to our monthly email newsletter distribution list.

By joining Cureus, you agree to our Privacy Policy and Terms of Use.